plotly
plotly#
We’ve now seen the basics of plotting with pandas
and matplotlib
. We saw seaborn
. Let’s try another package, called plotly, that let’s us create interactive graphics. To install the Plotly package, you’ll need to use pip
. As before, you can do this inside of a cell in your notebook, or in the terminal.
pip install plotly
I won’t do a comprehensive overview, but I can show you a couple of examples. We’ll look at Plotly Express.
Let’s start by getting our stock data back in.
# Set-up
import numpy as np
import pandas as pd
# This brings in all of matplotlib
import matplotlib as mpl
# This lets us refer to the pyplot part of matplot lib more easily. Just use plt!
import matplotlib.pyplot as plt
# Bring in Plotly Express
import plotly.express as px
# Bring in Plotly graphic objects
import plotly.graph_objects as go
import plotly.offline as py
# Keeps warnings from cluttering up our notebook.
import warnings
warnings.filterwarnings('ignore')
# Include this to have plots show up in your Jupyter notebook.
%matplotlib inline
# Read in some eod prices
stocks = pd.read_csv('https://raw.githubusercontent.com/aaiken1/fin-data-analysis-python/main/data/tr_eikon_eod_data.csv',
index_col=0, parse_dates=True)
stocks.dropna(inplace=True)
from janitor import clean_names
stocks = clean_names(stocks)
stocks.info()
<class 'pandas.core.frame.DataFrame'>
DatetimeIndex: 2138 entries, 2010-01-04 to 2018-06-29
Data columns (total 12 columns):
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 aapl_o 2138 non-null float64
1 msft_o 2138 non-null float64
2 intc_o 2138 non-null float64
3 amzn_o 2138 non-null float64
4 gs_n 2138 non-null float64
5 spy 2138 non-null float64
6 _spx 2138 non-null float64
7 _vix 2138 non-null float64
8 eur= 2138 non-null float64
9 xau= 2138 non-null float64
10 gdx 2138 non-null float64
11 gld 2138 non-null float64
dtypes: float64(12)
memory usage: 217.1 KB
Let’s make a simple line graph of prices for Apple. As a reminder, our date is our index in this DataFrame.
fig = px.line(stocks, x=stocks.index, y='aapl_o', title='Apple Price History')
fig.show()
/opt/anaconda3/lib/python3.9/site-packages/plotly/io/_renderers.py:395: DeprecationWarning:
distutils Version classes are deprecated. Use packaging.version instead.
/opt/anaconda3/lib/python3.9/site-packages/plotly/io/_renderers.py:395: DeprecationWarning:
distutils Version classes are deprecated. Use packaging.version instead.
Not bad! You can create what plotly
calls graphic objects. You than add traces, similar to axes, and start to layer things together. Here, we’ll create our “blank” figure and then add three more price sequences.
# Create traces
fig = go.Figure()
fig.add_trace(go.Scatter(x=stocks.index, y=stocks.aapl_o,
mode='lines',
name='AAPL'))
fig.add_trace(go.Scatter(x=stocks.index, y=stocks.msft_o,
mode='lines',
name='MSFT'))
fig.show()
/opt/anaconda3/lib/python3.9/site-packages/plotly/io/_renderers.py:395: DeprecationWarning:
distutils Version classes are deprecated. Use packaging.version instead.
/opt/anaconda3/lib/python3.9/site-packages/plotly/io/_renderers.py:395: DeprecationWarning:
distutils Version classes are deprecated. Use packaging.version instead.
We can create a histogram of returns too. I added a rug on the top which helps you see the distribution and outliers better. I am also showing the percentage of observations in a bin, not a count.
And, I made a bunch of other changes, just to give you an idea of the syntax.
stocks['aapl_ret'] = np.log(stocks.aapl_o / stocks.aapl_o.shift(1))
fig = px.histogram(stocks, x='aapl_ret',
marginal="rug", # That thing at the top!
histnorm='percent',
opacity=0.75, # alpha
width=600, #pixels
height=400,
template="simple_white")
fig.update_layout(
title_text='Apple Return Distribution', # title of plot
xaxis_title_text='Return', # xaxis label
yaxis_title_text='Percent', # yaxis label
bargap=0.2, # gap between bars of adjacent location coordinates
bargroupgap=0.1 # gap between bars of the same location coordinates
)
fig.show()
/opt/anaconda3/lib/python3.9/site-packages/plotly/io/_renderers.py:395: DeprecationWarning:
distutils Version classes are deprecated. Use packaging.version instead.
/opt/anaconda3/lib/python3.9/site-packages/plotly/io/_renderers.py:395: DeprecationWarning:
distutils Version classes are deprecated. Use packaging.version instead.