11. Regression topics#

This section will go into more detail on running regressions in Python. We already saw an example using factor models, like the CAPM and Fama-French 3-factor models.

We could spend an entire semester going over linear regression, how to put together models, how to interpret models, and all of the adjustments that we can make. In fact, this is basically what a first-semester Econometrics class is!

I will be following code examples from Coding for Economists, which has just about everything you need to know to do basic linear regression (OLS) in Python. I recommend giving it a read, especially if you’ve taken econometrics and have already seen the general ideas.

The Effect great book for getting starting with econometrics, regression, and how to add meaning to the regressions that we’re running. Chapter 13 of that book covers regression (with code in R).

You can read more about statsmodels on their help page.

I’ll be using our Zillow pricing error data in this example.

import numpy as np
import scipy.stats as st
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
import statsmodels.api as sm
import statsmodels.formula.api as smf

# Include this to have plots show up in your Jupyter notebook.
%matplotlib inline 

pd.options.display.max_columns = None
housing = pd.read_csv('https://raw.githubusercontent.com/aaiken1/fin-data-analysis-python/main/data/properties_2016_sample10_1.csv')
pricing = pd.read_csv('https://raw.githubusercontent.com/aaiken1/fin-data-analysis-python/main/data/train_2016_v2.csv')

zillow_data = pd.merge(housing, pricing, how='inner', on='parcelid')
zillow_data['transactiondate'] = pd.to_datetime(zillow_data['transactiondate'], format='%Y-%m-%d')
/var/folders/kx/y8vj3n6n5kq_d74vj24jsnh40000gn/T/ipykernel_41859/4278326240.py:1: DtypeWarning: Columns (49) have mixed types. Specify dtype option on import or set low_memory=False.
  housing = pd.read_csv('https://raw.githubusercontent.com/aaiken1/fin-data-analysis-python/main/data/properties_2016_sample10_1.csv')
zillow_data.describe()
parcelid airconditioningtypeid architecturalstyletypeid basementsqft bathroomcnt bedroomcnt buildingclasstypeid buildingqualitytypeid calculatedbathnbr decktypeid finishedfloor1squarefeet calculatedfinishedsquarefeet finishedsquarefeet12 finishedsquarefeet13 finishedsquarefeet15 finishedsquarefeet50 finishedsquarefeet6 fips fireplacecnt fullbathcnt garagecarcnt garagetotalsqft heatingorsystemtypeid latitude longitude lotsizesquarefeet poolcnt poolsizesum pooltypeid7 propertylandusetypeid rawcensustractandblock regionidcity regionidcounty regionidneighborhood regionidzip roomcnt storytypeid threequarterbathnbr typeconstructiontypeid unitcnt yardbuildingsqft17 yardbuildingsqft26 yearbuilt numberofstories structuretaxvaluedollarcnt taxvaluedollarcnt assessmentyear landtaxvaluedollarcnt taxamount taxdelinquencyyear censustractandblock logerror
count 9.071000e+03 2871.000000 0.0 5.00000 9071.000000 9071.000000 3.0 5694.000000 8948.000000 64.0 695.000000 9001.000000 8612.000000 3.000000 337.000000 695.000000 49.000000 9071.000000 993.000000 8948.000000 3076.000000 3076.000000 5574.000000 9.071000e+03 9.071000e+03 8.020000e+03 1810.0 99.000000 1685.0 9071.000000 9.071000e+03 8912.000000 9071.000000 3601.000000 9070.000000 9071.000000 5.0 1208.000000 0.0 5794.000000 280.000000 7.000000 8991.000000 2138.000000 9.022000e+03 9.071000e+03 9071.0 9.071000e+03 9071.000000 168.000000 9.009000e+03 9071.000000
mean 1.298764e+07 1.838036 NaN 516.00000 2.266233 3.013670 4.0 5.572708 2.296826 66.0 1348.981295 1767.239307 1740.108918 1408.000000 2393.350148 1368.942446 2251.428571 6049.128982 1.197382 2.228990 1.800715 342.415475 3.909760 3.400230e+07 -1.181977e+08 3.150909e+04 1.0 520.424242 1.0 261.835520 6.049436e+07 33944.006845 2511.879727 193520.398223 96547.689195 1.531364 7.0 1.004967 NaN 1.104764 290.335714 496.714286 1968.380047 1.428438 1.768673e+05 4.523049e+05 2015.0 2.763930e+05 5906.696988 13.327381 6.049368e+13 0.010703
std 1.757451e+06 3.001723 NaN 233.49197 0.989863 1.118468 0.0 1.908379 0.960557 0.0 664.508053 918.999586 880.213401 55.425626 1434.457485 709.622839 1352.034747 20.794593 0.480794 0.951007 0.598328 263.642761 3.678727 2.654493e+05 3.631575e+05 1.824345e+05 0.0 146.537109 0.0 5.781663 2.063550e+05 47178.373342 810.417898 169701.596819 412.732130 2.856603 0.0 0.070330 NaN 0.459551 172.987812 506.445033 23.469997 0.536698 1.909207e+05 5.229433e+05 0.0 3.901131e+05 6388.966672 1.796527 2.053649e+11 0.158364
min 1.071186e+07 1.000000 NaN 162.00000 0.000000 0.000000 4.0 1.000000 1.000000 66.0 49.000000 214.000000 214.000000 1344.000000 716.000000 49.000000 438.000000 6037.000000 1.000000 1.000000 0.000000 0.000000 1.000000 3.334420e+07 -1.194143e+08 4.350000e+02 1.0 207.000000 1.0 31.000000 6.037101e+07 3491.000000 1286.000000 6952.000000 95982.000000 0.000000 7.0 1.000000 NaN 1.000000 41.000000 37.000000 1885.000000 1.000000 1.516000e+03 7.837000e+03 2015.0 2.178000e+03 96.740000 7.000000 6.037101e+13 -2.365000
25% 1.157119e+07 1.000000 NaN 485.00000 2.000000 2.000000 4.0 4.000000 2.000000 66.0 938.000000 1187.000000 1173.000000 1392.000000 1668.000000 938.000000 1009.000000 6037.000000 1.000000 2.000000 2.000000 0.000000 2.000000 3.380545e+07 -1.184080e+08 5.746500e+03 1.0 435.000000 1.0 261.000000 6.037400e+07 12447.000000 1286.000000 46736.000000 96193.000000 0.000000 7.0 1.000000 NaN 1.000000 175.750000 110.500000 1953.000000 1.000000 8.028525e+04 1.926595e+05 2015.0 8.060700e+04 2828.645000 13.000000 6.037400e+13 -0.025300
50% 1.259048e+07 1.000000 NaN 515.00000 2.000000 3.000000 4.0 7.000000 2.000000 66.0 1249.000000 1539.000000 1513.000000 1440.000000 2157.000000 1257.000000 1835.000000 6037.000000 1.000000 2.000000 2.000000 430.000000 2.000000 3.401408e+07 -1.181670e+08 7.200000e+03 1.0 504.000000 1.0 261.000000 6.037621e+07 25218.000000 3101.000000 118887.000000 96401.000000 0.000000 7.0 1.000000 NaN 1.000000 248.500000 268.000000 1969.000000 1.000000 1.315530e+05 3.416920e+05 2015.0 1.910000e+05 4521.580000 14.000000 6.037621e+13 0.007000
75% 1.423676e+07 1.000000 NaN 616.00000 3.000000 4.000000 4.0 7.000000 3.000000 66.0 1612.000000 2090.000000 2055.000000 1440.000000 2806.000000 1617.500000 3732.000000 6059.000000 1.000000 3.000000 2.000000 484.000000 7.000000 3.417153e+07 -1.179195e+08 1.161675e+04 1.0 600.000000 1.0 266.000000 6.059052e+07 45457.000000 3101.000000 274815.000000 96987.000000 0.000000 7.0 1.000000 NaN 1.000000 360.000000 792.500000 1986.000000 2.000000 2.076458e+05 5.361120e+05 2015.0 3.428715e+05 6865.565000 15.000000 6.059052e+13 0.040200
max 1.730050e+07 13.000000 NaN 802.00000 12.000000 12.000000 4.0 12.000000 12.000000 66.0 5416.000000 22741.000000 10680.000000 1440.000000 22741.000000 6906.000000 5229.000000 6111.000000 3.000000 12.000000 9.000000 2685.000000 24.000000 3.477509e+07 -1.175604e+08 6.971010e+06 1.0 1052.000000 1.0 275.000000 6.111009e+07 396556.000000 3101.000000 764166.000000 97344.000000 13.000000 7.0 2.000000 NaN 9.000000 1018.000000 1366.000000 2015.000000 3.000000 4.588745e+06 1.275000e+07 2015.0 1.200000e+07 152152.220000 15.000000 6.111009e+13 2.953000

I’ll print a list of the columns, just to see what our variables are. There’s a lot in this data set.

zillow_data.columns
Index(['parcelid', 'airconditioningtypeid', 'architecturalstyletypeid',
       'basementsqft', 'bathroomcnt', 'bedroomcnt', 'buildingclasstypeid',
       'buildingqualitytypeid', 'calculatedbathnbr', 'decktypeid',
       'finishedfloor1squarefeet', 'calculatedfinishedsquarefeet',
       'finishedsquarefeet12', 'finishedsquarefeet13', 'finishedsquarefeet15',
       'finishedsquarefeet50', 'finishedsquarefeet6', 'fips', 'fireplacecnt',
       'fullbathcnt', 'garagecarcnt', 'garagetotalsqft', 'hashottuborspa',
       'heatingorsystemtypeid', 'latitude', 'longitude', 'lotsizesquarefeet',
       'poolcnt', 'poolsizesum', 'pooltypeid10', 'pooltypeid2', 'pooltypeid7',
       'propertycountylandusecode', 'propertylandusetypeid',
       'propertyzoningdesc', 'rawcensustractandblock', 'regionidcity',
       'regionidcounty', 'regionidneighborhood', 'regionidzip', 'roomcnt',
       'storytypeid', 'threequarterbathnbr', 'typeconstructiontypeid',
       'unitcnt', 'yardbuildingsqft17', 'yardbuildingsqft26', 'yearbuilt',
       'numberofstories', 'fireplaceflag', 'structuretaxvaluedollarcnt',
       'taxvaluedollarcnt', 'assessmentyear', 'landtaxvaluedollarcnt',
       'taxamount', 'taxdelinquencyflag', 'taxdelinquencyyear',
       'censustractandblock', 'logerror', 'transactiondate'],
      dtype='object')

Let’s run a really simple regression. Can we explain pricing errors using the size of the house? I’ll take the natural log of calculatedfinishedsquarefeet and use that as my independent (X) variable. My dependent (Y) variable will be logerror. I’m taking the natural log of the square footage, in order to have what’s called a “log-log” model.

zillow_data['ln_calculatedfinishedsquarefeet'] = np.log(zillow_data['calculatedfinishedsquarefeet'])

results = smf.ols("logerror ~ ln_calculatedfinishedsquarefeet", data=zillow_data).fit()
print(results.summary())
                            OLS Regression Results                            
==============================================================================
Dep. Variable:               logerror   R-squared:                       0.001
Model:                            OLS   Adj. R-squared:                  0.001
Method:                 Least Squares   F-statistic:                     13.30
Date:                Tue, 23 Jan 2024   Prob (F-statistic):           0.000267
Time:                        12:40:20   Log-Likelihood:                 3831.8
No. Observations:                9001   AIC:                            -7660.
Df Residuals:                    8999   BIC:                            -7645.
Df Model:                           1                                         
Covariance Type:            nonrobust                                         
===================================================================================================
                                      coef    std err          t      P>|t|      [0.025      0.975]
---------------------------------------------------------------------------------------------------
Intercept                          -0.0911      0.028     -3.244      0.001      -0.146      -0.036
ln_calculatedfinishedsquarefeet     0.0139      0.004      3.647      0.000       0.006       0.021
==============================================================================
Omnibus:                     4055.877   Durbin-Watson:                   2.005
Prob(Omnibus):                  0.000   Jarque-Bera (JB):          2595715.665
Skew:                           0.737   Prob(JB):                         0.00
Kurtosis:                      86.180   Cond. No.                         127.
==============================================================================

Notes:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

That’s the full summary of the regression. This is a “log-log” model, so we can say that a 1% change in square footage leads to a 1.39% increase in pricing error. The coefficient is positive and statistically significant at conventional levels (e.g. 1%).

We can pull out just a piece of this full result if we like.

results.summary().tables[1]
coef std err t P>|t| [0.025 0.975]
Intercept -0.0911 0.028 -3.244 0.001 -0.146 -0.036
ln_calculatedfinishedsquarefeet 0.0139 0.004 3.647 0.000 0.006 0.021

We can, of course, include multiple X variables in a regression. I’ll add bathroom and bedroom counts to the regression model.

results = smf.ols("logerror ~ ln_calculatedfinishedsquarefeet + bathroomcnt + bedroomcnt", data=zillow_data).fit()
print(results.summary())
                            OLS Regression Results                            
==============================================================================
Dep. Variable:               logerror   R-squared:                       0.002
Model:                            OLS   Adj. R-squared:                  0.002
Method:                 Least Squares   F-statistic:                     6.718
Date:                Tue, 23 Jan 2024   Prob (F-statistic):           0.000159
Time:                        12:40:20   Log-Likelihood:                 3835.2
No. Observations:                9001   AIC:                            -7662.
Df Residuals:                    8997   BIC:                            -7634.
Df Model:                           3                                         
Covariance Type:            nonrobust                                         
===================================================================================================
                                      coef    std err          t      P>|t|      [0.025      0.975]
---------------------------------------------------------------------------------------------------
Intercept                          -0.0140      0.041     -0.339      0.735      -0.095       0.067
ln_calculatedfinishedsquarefeet     0.0006      0.006      0.095      0.925      -0.012       0.013
bathroomcnt                         0.0040      0.003      1.493      0.135      -0.001       0.009
bedroomcnt                          0.0038      0.002      1.740      0.082      -0.000       0.008
==============================================================================
Omnibus:                     4050.508   Durbin-Watson:                   2.005
Prob(Omnibus):                  0.000   Jarque-Bera (JB):          2598102.584
Skew:                           0.733   Prob(JB):                         0.00
Kurtosis:                      86.219   Cond. No.                         211.
==============================================================================

Notes:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Hey, all of my significance went away! Welcome to the world of multicollinearity. All of these variables are very correlated, so the coefficient estimates become difficult to interpret.

Watch what happens when I just run the model with the bedroom count. The \(t\)-statistic is quite large again.

results = smf.ols("logerror ~ bedroomcnt", data=zillow_data).fit()
print(results.summary())
                            OLS Regression Results                            
==============================================================================
Dep. Variable:               logerror   R-squared:                       0.002
Model:                            OLS   Adj. R-squared:                  0.002
Method:                 Least Squares   F-statistic:                     21.69
Date:                Tue, 23 Jan 2024   Prob (F-statistic):           3.24e-06
Time:                        12:40:20   Log-Likelihood:                 3856.7
No. Observations:                9071   AIC:                            -7709.
Df Residuals:                    9069   BIC:                            -7695.
Df Model:                           1                                         
Covariance Type:            nonrobust                                         
==============================================================================
                 coef    std err          t      P>|t|      [0.025      0.975]
------------------------------------------------------------------------------
Intercept     -0.0101      0.005     -2.125      0.034      -0.019      -0.001
bedroomcnt     0.0069      0.001      4.658      0.000       0.004       0.010
==============================================================================
Omnibus:                     4021.076   Durbin-Watson:                   2.006
Prob(Omnibus):                  0.000   Jarque-Bera (JB):          2560800.149
Skew:                           0.697   Prob(JB):                         0.00
Kurtosis:                      85.301   Cond. No.                         10.0
==============================================================================

Notes:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

11.1. Indicators and categorical variables#

The variables used above are measured numerically. Some are continuous, like square footage, while others are counts, like the number of bedrooms. Sometimes, though, we want to include an indicator for something? For example, does this house have a pool or not?

There is a variable in the data called poolcnt. It seems to be either missing (NaN) or set equal to 1. I believe that a value of 1 means that the house has a pool and that NaN means that it does not. This is bit of a tricky assumption, because NaN could mean no pool or that we don’t know either way. But, I’ll make that assumption for illustrative purposes.

zillow_data['poolcnt'].describe()
count    1810.0
mean        1.0
std         0.0
min         1.0
25%         1.0
50%         1.0
75%         1.0
max         1.0
Name: poolcnt, dtype: float64

I am going to create a new variable, pool_d, that is set equal to 1 if poolcnt >= 1 and 0 otherwise. This type of 1/0 categorical variable is sometimes called an indicator, or dummy variable.

zillow_data['pool_d'] = np.where(zillow_data.poolcnt.isnull(), 0, zillow_data.poolcnt >= 1)
zillow_data['pool_d'].describe()
count    9071.000000
mean        0.199537
std         0.399674
min         0.000000
25%         0.000000
50%         0.000000
75%         0.000000
max         1.000000
Name: pool_d, dtype: float64

I can then use this 1/0 variable in my regression.

results = smf.ols("logerror ~ ln_calculatedfinishedsquarefeet + pool_d", data=zillow_data).fit()
print(results.summary())
                            OLS Regression Results                            
==============================================================================
Dep. Variable:               logerror   R-squared:                       0.001
Model:                            OLS   Adj. R-squared:                  0.001
Method:                 Least Squares   F-statistic:                     6.684
Date:                Tue, 23 Jan 2024   Prob (F-statistic):            0.00126
Time:                        12:40:20   Log-Likelihood:                 3831.8
No. Observations:                9001   AIC:                            -7658.
Df Residuals:                    8998   BIC:                            -7636.
Df Model:                           2                                         
Covariance Type:            nonrobust                                         
===================================================================================================
                                      coef    std err          t      P>|t|      [0.025      0.975]
---------------------------------------------------------------------------------------------------
Intercept                          -0.0898      0.029     -3.150      0.002      -0.146      -0.034
ln_calculatedfinishedsquarefeet     0.0137      0.004      3.519      0.000       0.006       0.021
pool_d                              0.0011      0.004      0.262      0.794      -0.007       0.009
==============================================================================
Omnibus:                     4055.061   Durbin-Watson:                   2.006
Prob(Omnibus):                  0.000   Jarque-Bera (JB):          2593138.691
Skew:                           0.737   Prob(JB):                         0.00
Kurtosis:                      86.139   Cond. No.                         129.
==============================================================================

Notes:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Pools don’t seem to influence pricing errors.

We can also create more general categorical variables. For example, instead of treating bedrooms like a count, we can create new categories for each number of bedrooms. This type of model is helpful when dealing states or regions. For example, you could turn a zip code into a categorical variable. This would allow zip codes, or a location, to explain the pricing errors.

In Python, you can turn something into a categorical variable by using C() in the regression formula.

I’ll try the count of bedrooms first.

results = smf.ols("logerror ~ ln_calculatedfinishedsquarefeet + C(bedroomcnt)", data=zillow_data).fit()
print(results.summary())
                            OLS Regression Results                            
==============================================================================
Dep. Variable:               logerror   R-squared:                       0.004
Model:                            OLS   Adj. R-squared:                  0.003
Method:                 Least Squares   F-statistic:                     3.118
Date:                Tue, 23 Jan 2024   Prob (F-statistic):           0.000196
Time:                        12:40:20   Log-Likelihood:                 3843.8
No. Observations:                9001   AIC:                            -7662.
Df Residuals:                    8988   BIC:                            -7569.
Df Model:                          12                                         
Covariance Type:            nonrobust                                         
===================================================================================================
                                      coef    std err          t      P>|t|      [0.025      0.975]
---------------------------------------------------------------------------------------------------
Intercept                          -0.0680      0.045     -1.523      0.128      -0.155       0.020
C(bedroomcnt)[T.1.0]                0.0370      0.021      1.756      0.079      -0.004       0.078
C(bedroomcnt)[T.2.0]                0.0279      0.020      1.428      0.153      -0.010       0.066
C(bedroomcnt)[T.3.0]                0.0319      0.019      1.648      0.099      -0.006       0.070
C(bedroomcnt)[T.4.0]                0.0357      0.020      1.825      0.068      -0.003       0.074
C(bedroomcnt)[T.5.0]                0.0580      0.021      2.799      0.005       0.017       0.099
C(bedroomcnt)[T.6.0]                0.0491      0.024      2.007      0.045       0.001       0.097
C(bedroomcnt)[T.7.0]                0.0903      0.040      2.266      0.023       0.012       0.168
C(bedroomcnt)[T.8.0]               -0.0165      0.043     -0.383      0.702      -0.101       0.068
C(bedroomcnt)[T.9.0]               -0.1190      0.081     -1.461      0.144      -0.279       0.041
C(bedroomcnt)[T.10.0]               0.0312      0.159      0.196      0.845      -0.281       0.343
C(bedroomcnt)[T.12.0]               0.0399      0.114      0.351      0.725      -0.183       0.262
ln_calculatedfinishedsquarefeet     0.0062      0.005      1.134      0.257      -0.005       0.017
==============================================================================
Omnibus:                     4046.896   Durbin-Watson:                   2.006
Prob(Omnibus):                  0.000   Jarque-Bera (JB):          2594171.124
Skew:                           0.731   Prob(JB):                         0.00
Kurtosis:                      86.156   Cond. No.                         716.
==============================================================================

Notes:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

And here are zip codes as a categorical variable. This is saying: Is the house in this zip code or no? If it is, the indicator for that zip code gets a 1, and a 0 otherwise. If we didn’t do this, then the zip code would get treated like a numerical variable in the regression, like square footage, which makes no sense!

results = smf.ols("logerror ~ ln_calculatedfinishedsquarefeet + C(regionidzip)", data=zillow_data).fit()
print(results.summary())
                            OLS Regression Results                            
==============================================================================
Dep. Variable:               logerror   R-squared:                       0.054
Model:                            OLS   Adj. R-squared:                  0.012
Method:                 Least Squares   F-statistic:                     1.300
Date:                Tue, 23 Jan 2024   Prob (F-statistic):           0.000104
Time:                        12:40:20   Log-Likelihood:                 4075.3
No. Observations:                9001   AIC:                            -7391.
Df Residuals:                    8621   BIC:                            -4691.
Df Model:                         379                                         
Covariance Type:            nonrobust                                         
===================================================================================================
                                      coef    std err          t      P>|t|      [0.025      0.975]
---------------------------------------------------------------------------------------------------
Intercept                          -0.1624      0.050     -3.261      0.001      -0.260      -0.065
C(regionidzip)[T.95983.0]           0.0855      0.053      1.621      0.105      -0.018       0.189
C(regionidzip)[T.95984.0]          -0.0735      0.050     -1.481      0.139      -0.171       0.024
C(regionidzip)[T.95985.0]           0.0679      0.051      1.326      0.185      -0.032       0.168
C(regionidzip)[T.95986.0]           0.0356      0.060      0.593      0.553      -0.082       0.153
C(regionidzip)[T.95987.0]           0.1185      0.066      1.807      0.071      -0.010       0.247
C(regionidzip)[T.95988.0]           0.1128      0.088      1.283      0.199      -0.060       0.285
C(regionidzip)[T.95989.0]           0.0356      0.058      0.618      0.537      -0.077       0.148
C(regionidzip)[T.95991.0]           0.0894      0.162      0.551      0.581      -0.228       0.407
C(regionidzip)[T.95992.0]          -0.0856      0.052     -1.641      0.101      -0.188       0.017
C(regionidzip)[T.95993.0]           0.0710      0.099      0.718      0.473      -0.123       0.265
C(regionidzip)[T.95994.0]           0.1135      0.088      1.291      0.197      -0.059       0.286
C(regionidzip)[T.95996.0]           0.1052      0.071      1.476      0.140      -0.034       0.245
C(regionidzip)[T.95997.0]           0.0820      0.049      1.674      0.094      -0.014       0.178
C(regionidzip)[T.95998.0]           0.0517      0.088      0.589      0.556      -0.121       0.224
C(regionidzip)[T.95999.0]           0.1369      0.057      2.423      0.015       0.026       0.248
C(regionidzip)[T.96000.0]           0.1968      0.050      3.937      0.000       0.099       0.295
C(regionidzip)[T.96001.0]           0.1037      0.063      1.636      0.102      -0.021       0.228
C(regionidzip)[T.96003.0]           0.0724      0.060      1.205      0.228      -0.045       0.190
C(regionidzip)[T.96004.0]           0.0467      0.088      0.531      0.596      -0.126       0.219
C(regionidzip)[T.96005.0]           0.1988      0.048      4.106      0.000       0.104       0.294
C(regionidzip)[T.96006.0]           0.0866      0.049      1.770      0.077      -0.009       0.183
C(regionidzip)[T.96007.0]           0.0738      0.051      1.454      0.146      -0.026       0.173
C(regionidzip)[T.96008.0]           0.0746      0.052      1.430      0.153      -0.028       0.177
C(regionidzip)[T.96009.0]           0.0495      0.088      0.564      0.573      -0.123       0.222
C(regionidzip)[T.96010.0]           0.6989      0.162      4.312      0.000       0.381       1.017
C(regionidzip)[T.96012.0]           0.0608      0.059      1.036      0.300      -0.054       0.176
C(regionidzip)[T.96013.0]           0.1014      0.053      1.900      0.057      -0.003       0.206
C(regionidzip)[T.96014.0]           0.0780      0.063      1.231      0.218      -0.046       0.202
C(regionidzip)[T.96015.0]           0.0950      0.051      1.857      0.063      -0.005       0.195
C(regionidzip)[T.96016.0]           0.0383      0.053      0.726      0.468      -0.065       0.142
C(regionidzip)[T.96017.0]           0.0911      0.066      1.390      0.164      -0.037       0.220
C(regionidzip)[T.96018.0]           0.0910      0.054      1.684      0.092      -0.015       0.197
C(regionidzip)[T.96019.0]           0.0107      0.068      0.156      0.876      -0.123       0.144
C(regionidzip)[T.96020.0]          -0.0248      0.055     -0.452      0.651      -0.132       0.083
C(regionidzip)[T.96021.0]           0.0026      0.118      0.022      0.982      -0.229       0.234
C(regionidzip)[T.96022.0]           0.0655      0.054      1.212      0.225      -0.040       0.171
C(regionidzip)[T.96023.0]           0.0959      0.047      2.021      0.043       0.003       0.189
C(regionidzip)[T.96024.0]           0.0828      0.048      1.736      0.083      -0.011       0.176
C(regionidzip)[T.96025.0]          -0.0347      0.049     -0.705      0.481      -0.131       0.062
C(regionidzip)[T.96026.0]           0.0124      0.050      0.249      0.804      -0.086       0.110
C(regionidzip)[T.96027.0]           0.1040      0.047      2.201      0.028       0.011       0.197
C(regionidzip)[T.96028.0]           0.0745      0.050      1.492      0.136      -0.023       0.172
C(regionidzip)[T.96029.0]           0.0818      0.051      1.598      0.110      -0.019       0.182
C(regionidzip)[T.96030.0]           0.0535      0.046      1.153      0.249      -0.037       0.144
C(regionidzip)[T.96037.0]           0.2007      0.099      2.028      0.043       0.007       0.395
C(regionidzip)[T.96038.0]           0.0674      0.099      0.681      0.496      -0.127       0.261
C(regionidzip)[T.96040.0]           0.1530      0.058      2.660      0.008       0.040       0.266
C(regionidzip)[T.96042.0]           0.0235      0.118      0.199      0.842      -0.208       0.255
C(regionidzip)[T.96043.0]           0.2073      0.055      3.784      0.000       0.100       0.315
C(regionidzip)[T.96044.0]           0.0728      0.057      1.289      0.197      -0.038       0.184
C(regionidzip)[T.96045.0]           0.0826      0.053      1.566      0.117      -0.021       0.186
C(regionidzip)[T.96046.0]           0.0574      0.048      1.186      0.236      -0.037       0.152
C(regionidzip)[T.96047.0]           0.0564      0.047      1.200      0.230      -0.036       0.149
C(regionidzip)[T.96048.0]           0.0823      0.062      1.337      0.181      -0.038       0.203
C(regionidzip)[T.96049.0]           0.0682      0.050      1.355      0.175      -0.030       0.167
C(regionidzip)[T.96050.0]           0.0114      0.046      0.249      0.803      -0.078       0.101
C(regionidzip)[T.96058.0]          -0.1212      0.062     -1.966      0.049      -0.242      -0.000
C(regionidzip)[T.96072.0]           0.0750      0.063      1.183      0.237      -0.049       0.199
C(regionidzip)[T.96083.0]          -0.0567      0.062     -0.920      0.357      -0.177       0.064
C(regionidzip)[T.96086.0]           0.0744      0.050      1.486      0.137      -0.024       0.172
C(regionidzip)[T.96087.0]           0.0877      0.081      1.088      0.277      -0.070       0.246
C(regionidzip)[T.96088.0]           0.0001      0.088      0.002      0.999      -0.172       0.172
C(regionidzip)[T.96090.0]           0.0834      0.051      1.643      0.100      -0.016       0.183
C(regionidzip)[T.96091.0]           0.0911      0.057      1.612      0.107      -0.020       0.202
C(regionidzip)[T.96092.0]           0.0375      0.058      0.652      0.514      -0.075       0.150
C(regionidzip)[T.96095.0]           0.0977      0.048      2.030      0.042       0.003       0.192
C(regionidzip)[T.96097.0]           0.0627      0.066      0.957      0.338      -0.066       0.191
C(regionidzip)[T.96100.0]           0.0843      0.062      1.369      0.171      -0.036       0.205
C(regionidzip)[T.96101.0]           0.0751      0.058      1.305      0.192      -0.038       0.188
C(regionidzip)[T.96102.0]           0.1371      0.056      2.466      0.014       0.028       0.246
C(regionidzip)[T.96103.0]           0.1050      0.058      1.825      0.068      -0.008       0.218
C(regionidzip)[T.96104.0]           0.1278      0.059      2.176      0.030       0.013       0.243
C(regionidzip)[T.96106.0]           0.0884      0.071      1.241      0.215      -0.051       0.228
C(regionidzip)[T.96107.0]           0.0371      0.048      0.778      0.436      -0.056       0.131
C(regionidzip)[T.96109.0]           0.0408      0.052      0.789      0.430      -0.061       0.142
C(regionidzip)[T.96110.0]           0.1071      0.062      1.739      0.082      -0.014       0.228
C(regionidzip)[T.96111.0]           0.1558      0.059      2.654      0.008       0.041       0.271
C(regionidzip)[T.96113.0]           0.0793      0.056      1.427      0.154      -0.030       0.188
C(regionidzip)[T.96116.0]           0.1362      0.049      2.761      0.006       0.039       0.233
C(regionidzip)[T.96117.0]           0.0503      0.049      1.033      0.302      -0.045       0.146
C(regionidzip)[T.96119.0]           0.0233      0.118      0.198      0.843      -0.208       0.254
C(regionidzip)[T.96120.0]           0.1071      0.050      2.140      0.032       0.009       0.205
C(regionidzip)[T.96121.0]           0.1159      0.048      2.402      0.016       0.021       0.210
C(regionidzip)[T.96122.0]           0.1085      0.047      2.322      0.020       0.017       0.200
C(regionidzip)[T.96123.0]           0.1051      0.045      2.332      0.020       0.017       0.193
C(regionidzip)[T.96124.0]           0.0644      0.049      1.323      0.186      -0.031       0.160
C(regionidzip)[T.96125.0]           0.1242      0.050      2.505      0.012       0.027       0.221
C(regionidzip)[T.96126.0]           0.1040      0.066      1.587      0.113      -0.024       0.232
C(regionidzip)[T.96127.0]           0.0621      0.053      1.164      0.245      -0.042       0.167
C(regionidzip)[T.96128.0]           0.0877      0.049      1.779      0.075      -0.009       0.184
C(regionidzip)[T.96129.0]           0.0729      0.051      1.425      0.154      -0.027       0.173
C(regionidzip)[T.96133.0]           0.0630      0.081      0.782      0.434      -0.095       0.221
C(regionidzip)[T.96134.0]           0.0643      0.062      1.044      0.296      -0.056       0.185
C(regionidzip)[T.96135.0]           0.0370      0.081      0.459      0.646      -0.121       0.195
C(regionidzip)[T.96136.0]           0.1674      0.075      2.225      0.026       0.020       0.315
C(regionidzip)[T.96137.0]           0.0436      0.063      0.688      0.492      -0.081       0.168
C(regionidzip)[T.96148.0]           0.0509      0.162      0.314      0.753      -0.267       0.369
C(regionidzip)[T.96149.0]          -0.0477      0.075     -0.633      0.527      -0.195       0.100
C(regionidzip)[T.96150.0]           0.1066      0.053      2.022      0.043       0.003       0.210
C(regionidzip)[T.96151.0]           0.0819      0.062      1.330      0.183      -0.039       0.203
C(regionidzip)[T.96152.0]           0.0879      0.053      1.648      0.099      -0.017       0.192
C(regionidzip)[T.96159.0]           0.0828      0.052      1.603      0.109      -0.018       0.184
C(regionidzip)[T.96160.0]           0.0337      0.062      0.548      0.584      -0.087       0.154
C(regionidzip)[T.96161.0]           0.0840      0.048      1.746      0.081      -0.010       0.178
C(regionidzip)[T.96162.0]           0.0054      0.048      0.112      0.911      -0.089       0.100
C(regionidzip)[T.96163.0]           0.0960      0.048      1.995      0.046       0.002       0.190
C(regionidzip)[T.96169.0]           0.0683      0.050      1.367      0.172      -0.030       0.166
C(regionidzip)[T.96170.0]           0.0916      0.060      1.525      0.127      -0.026       0.209
C(regionidzip)[T.96171.0]           0.0789      0.053      1.478      0.139      -0.026       0.183
C(regionidzip)[T.96172.0]           0.0922      0.050      1.858      0.063      -0.005       0.189
C(regionidzip)[T.96173.0]           0.0911      0.052      1.745      0.081      -0.011       0.193
C(regionidzip)[T.96174.0]           0.1300      0.051      2.540      0.011       0.030       0.230
C(regionidzip)[T.96180.0]           0.0854      0.049      1.755      0.079      -0.010       0.181
C(regionidzip)[T.96181.0]           0.0544      0.060      0.906      0.365      -0.063       0.172
C(regionidzip)[T.96183.0]           0.0825      0.059      1.405      0.160      -0.033       0.198
C(regionidzip)[T.96185.0]           0.0657      0.048      1.365      0.172      -0.029       0.160
C(regionidzip)[T.96186.0]           0.0918      0.046      2.000      0.045       0.002       0.182
C(regionidzip)[T.96190.0]           0.0561      0.045      1.242      0.214      -0.032       0.145
C(regionidzip)[T.96192.0]           0.0947      0.059      1.613      0.107      -0.020       0.210
C(regionidzip)[T.96193.0]           0.0999      0.045      2.243      0.025       0.013       0.187
C(regionidzip)[T.96197.0]           0.0841      0.048      1.756      0.079      -0.010       0.178
C(regionidzip)[T.96201.0]           0.0929      0.066      1.419      0.156      -0.035       0.221
C(regionidzip)[T.96203.0]           0.0877      0.051      1.714      0.087      -0.013       0.188
C(regionidzip)[T.96204.0]           0.0453      0.088      0.515      0.606      -0.127       0.218
C(regionidzip)[T.96206.0]           0.0701      0.048      1.470      0.142      -0.023       0.164
C(regionidzip)[T.96207.0]          -0.3899      0.118     -3.306      0.001      -0.621      -0.159
C(regionidzip)[T.96208.0]           0.1149      0.049      2.332      0.020       0.018       0.211
C(regionidzip)[T.96210.0]           0.0715      0.054      1.324      0.186      -0.034       0.177
C(regionidzip)[T.96212.0]           0.0383      0.049      0.786      0.432      -0.057       0.134
C(regionidzip)[T.96213.0]           0.0722      0.049      1.474      0.141      -0.024       0.168
C(regionidzip)[T.96215.0]           0.0528      0.060      0.880      0.379      -0.065       0.171
C(regionidzip)[T.96216.0]           0.0220      0.088      0.250      0.803      -0.150       0.194
C(regionidzip)[T.96217.0]           0.0975      0.053      1.827      0.068      -0.007       0.202
C(regionidzip)[T.96218.0]           0.0441      0.068      0.648      0.517      -0.089       0.178
C(regionidzip)[T.96220.0]           0.0614      0.053      1.151      0.250      -0.043       0.166
C(regionidzip)[T.96221.0]           0.0645      0.050      1.291      0.197      -0.033       0.162
C(regionidzip)[T.96222.0]           0.0449      0.052      0.861      0.389      -0.057       0.147
C(regionidzip)[T.96225.0]           0.0998      0.060      1.662      0.097      -0.018       0.217
C(regionidzip)[T.96226.0]          -0.1985      0.162     -1.224      0.221      -0.516       0.119
C(regionidzip)[T.96228.0]           0.1288      0.063      2.032      0.042       0.005       0.253
C(regionidzip)[T.96229.0]           0.0691      0.048      1.429      0.153      -0.026       0.164
C(regionidzip)[T.96230.0]           0.0721      0.066      1.101      0.271      -0.056       0.201
C(regionidzip)[T.96234.0]           0.1105      0.060      1.841      0.066      -0.007       0.228
C(regionidzip)[T.96236.0]           0.0862      0.046      1.866      0.062      -0.004       0.177
C(regionidzip)[T.96237.0]           0.1019      0.047      2.183      0.029       0.010       0.193
C(regionidzip)[T.96238.0]           0.0286      0.056      0.514      0.607      -0.080       0.138
C(regionidzip)[T.96239.0]           0.0991      0.052      1.917      0.055      -0.002       0.200
C(regionidzip)[T.96240.0]           0.1147      0.062      1.863      0.062      -0.006       0.235
C(regionidzip)[T.96241.0]           0.0724      0.050      1.449      0.147      -0.026       0.170
C(regionidzip)[T.96242.0]           0.1168      0.047      2.483      0.013       0.025       0.209
C(regionidzip)[T.96244.0]           0.1150      0.060      1.915      0.055      -0.003       0.233
C(regionidzip)[T.96245.0]           0.0974      0.060      1.623      0.105      -0.020       0.215
C(regionidzip)[T.96246.0]           0.0864      0.057      1.528      0.126      -0.024       0.197
C(regionidzip)[T.96247.0]           0.0571      0.047      1.219      0.223      -0.035       0.149
C(regionidzip)[T.96265.0]           0.0586      0.046      1.268      0.205      -0.032       0.149
C(regionidzip)[T.96267.0]           0.1051      0.050      2.102      0.036       0.007       0.203
C(regionidzip)[T.96268.0]           0.0626      0.050      1.253      0.210      -0.035       0.161
C(regionidzip)[T.96270.0]           0.0777      0.052      1.490      0.136      -0.025       0.180
C(regionidzip)[T.96271.0]           0.0959      0.053      1.795      0.073      -0.009       0.201
C(regionidzip)[T.96273.0]           0.0728      0.049      1.495      0.135      -0.023       0.168
C(regionidzip)[T.96275.0]           0.1095      0.062      1.778      0.075      -0.011       0.230
C(regionidzip)[T.96278.0]           0.1404      0.060      2.337      0.019       0.023       0.258
C(regionidzip)[T.96280.0]           0.1266      0.058      2.200      0.028       0.014       0.239
C(regionidzip)[T.96282.0]           0.0850      0.053      1.612      0.107      -0.018       0.188
C(regionidzip)[T.96284.0]           0.0955      0.048      1.972      0.049       0.001       0.190
C(regionidzip)[T.96289.0]           0.0774      0.057      1.369      0.171      -0.033       0.188
C(regionidzip)[T.96291.0]           0.1160      0.066      1.770      0.077      -0.012       0.244
C(regionidzip)[T.96292.0]           0.1121      0.050      2.260      0.024       0.015       0.209
C(regionidzip)[T.96293.0]           0.0799      0.054      1.478      0.139      -0.026       0.186
C(regionidzip)[T.96294.0]           0.0692      0.052      1.326      0.185      -0.033       0.171
C(regionidzip)[T.96295.0]           0.0803      0.049      1.640      0.101      -0.016       0.176
C(regionidzip)[T.96296.0]          -0.0208      0.059     -0.354      0.723      -0.136       0.094
C(regionidzip)[T.96320.0]           0.0807      0.062      1.311      0.190      -0.040       0.201
C(regionidzip)[T.96321.0]           0.0436      0.056      0.785      0.433      -0.065       0.153
C(regionidzip)[T.96322.0]           0.0874      0.071      1.226      0.220      -0.052       0.227
C(regionidzip)[T.96323.0]           0.1231      0.081      1.528      0.126      -0.035       0.281
C(regionidzip)[T.96324.0]           0.1592      0.063      2.511      0.012       0.035       0.283
C(regionidzip)[T.96325.0]           0.1137      0.054      2.105      0.035       0.008       0.220
C(regionidzip)[T.96326.0]           0.0942      0.062      1.529      0.126      -0.027       0.215
C(regionidzip)[T.96327.0]           0.0636      0.063      1.004      0.315      -0.061       0.188
C(regionidzip)[T.96329.0]          -0.1132      0.118     -0.960      0.337      -0.344       0.118
C(regionidzip)[T.96330.0]           0.0704      0.049      1.437      0.151      -0.026       0.166
C(regionidzip)[T.96336.0]           0.1055      0.048      2.212      0.027       0.012       0.199
C(regionidzip)[T.96337.0]           0.0480      0.049      0.990      0.322      -0.047       0.143
C(regionidzip)[T.96338.0]           0.0797      0.068      1.170      0.242      -0.054       0.213
C(regionidzip)[T.96339.0]           0.0881      0.050      1.763      0.078      -0.010       0.186
C(regionidzip)[T.96341.0]           0.1345      0.058      2.338      0.019       0.022       0.247
C(regionidzip)[T.96342.0]           0.1316      0.049      2.669      0.008       0.035       0.228
C(regionidzip)[T.96346.0]           0.0778      0.049      1.578      0.115      -0.019       0.174
C(regionidzip)[T.96349.0]           0.0885      0.047      1.903      0.057      -0.003       0.180
C(regionidzip)[T.96351.0]           0.1143      0.045      2.546      0.011       0.026       0.202
C(regionidzip)[T.96352.0]           0.0887      0.052      1.717      0.086      -0.013       0.190
C(regionidzip)[T.96354.0]           0.0671      0.062      1.089      0.276      -0.054       0.188
C(regionidzip)[T.96355.0]           0.1355      0.053      2.567      0.010       0.032       0.239
C(regionidzip)[T.96356.0]           0.1332      0.050      2.644      0.008       0.034       0.232
C(regionidzip)[T.96361.0]           0.0502      0.048      1.052      0.293      -0.043       0.144
C(regionidzip)[T.96364.0]           0.1708      0.046      3.754      0.000       0.082       0.260
C(regionidzip)[T.96366.0]           0.1077      0.058      1.872      0.061      -0.005       0.220
C(regionidzip)[T.96368.0]           0.0665      0.048      1.389      0.165      -0.027       0.160
C(regionidzip)[T.96369.0]           0.0569      0.049      1.169      0.242      -0.039       0.152
C(regionidzip)[T.96370.0]           0.0988      0.046      2.165      0.030       0.009       0.188
C(regionidzip)[T.96371.0]           0.1170      0.062      1.900      0.058      -0.004       0.238
C(regionidzip)[T.96373.0]           0.0846      0.045      1.863      0.063      -0.004       0.174
C(regionidzip)[T.96374.0]           0.0974      0.047      2.053      0.040       0.004       0.190
C(regionidzip)[T.96375.0]           0.1062      0.054      1.966      0.049       0.000       0.212
C(regionidzip)[T.96377.0]           0.0756      0.046      1.652      0.099      -0.014       0.165
C(regionidzip)[T.96378.0]           0.0866      0.049      1.779      0.075      -0.009       0.182
C(regionidzip)[T.96379.0]           0.1042      0.046      2.246      0.025       0.013       0.195
C(regionidzip)[T.96383.0]           0.0829      0.045      1.827      0.068      -0.006       0.172
C(regionidzip)[T.96384.0]           0.0821      0.052      1.588      0.112      -0.019       0.183
C(regionidzip)[T.96385.0]           0.0645      0.045      1.439      0.150      -0.023       0.152
C(regionidzip)[T.96387.0]           0.1182      0.054      2.187      0.029       0.012       0.224
C(regionidzip)[T.96389.0]           0.0993      0.045      2.215      0.027       0.011       0.187
C(regionidzip)[T.96393.0]           0.0740      0.052      1.432      0.152      -0.027       0.175
C(regionidzip)[T.96395.0]           0.0802      0.055      1.463      0.143      -0.027       0.188
C(regionidzip)[T.96398.0]           0.0911      0.047      1.935      0.053      -0.001       0.183
C(regionidzip)[T.96401.0]           0.0869      0.045      1.938      0.053      -0.001       0.175
C(regionidzip)[T.96403.0]           0.0701      0.051      1.368      0.171      -0.030       0.171
C(regionidzip)[T.96410.0]           0.0354      0.051      0.692      0.489      -0.065       0.136
C(regionidzip)[T.96411.0]           0.0725      0.051      1.429      0.153      -0.027       0.172
C(regionidzip)[T.96412.0]           0.0814      0.050      1.629      0.103      -0.017       0.179
C(regionidzip)[T.96414.0]           0.0862      0.053      1.635      0.102      -0.017       0.190
C(regionidzip)[T.96415.0]           0.0944      0.048      1.961      0.050    3.39e-05       0.189
C(regionidzip)[T.96420.0]           0.0836      0.056      1.504      0.133      -0.025       0.193
C(regionidzip)[T.96424.0]           0.0785      0.046      1.700      0.089      -0.012       0.169
C(regionidzip)[T.96426.0]           0.0113      0.057      0.201      0.841      -0.100       0.122
C(regionidzip)[T.96433.0]           0.0625      0.056      1.124      0.261      -0.046       0.171
C(regionidzip)[T.96434.0]           0.0586      0.099      0.592      0.554      -0.135       0.252
C(regionidzip)[T.96436.0]           0.0790      0.055      1.443      0.149      -0.028       0.186
C(regionidzip)[T.96437.0]           0.0777      0.053      1.473      0.141      -0.026       0.181
C(regionidzip)[T.96438.0]           0.0873      0.066      1.333      0.183      -0.041       0.216
C(regionidzip)[T.96446.0]           0.0451      0.049      0.920      0.357      -0.051       0.141
C(regionidzip)[T.96447.0]           0.0911      0.052      1.747      0.081      -0.011       0.193
C(regionidzip)[T.96449.0]           0.0817      0.050      1.634      0.102      -0.016       0.180
C(regionidzip)[T.96450.0]           0.0544      0.050      1.089      0.276      -0.044       0.152
C(regionidzip)[T.96451.0]           0.0603      0.053      1.144      0.253      -0.043       0.164
C(regionidzip)[T.96452.0]           0.0852      0.050      1.692      0.091      -0.013       0.184
C(regionidzip)[T.96464.0]           0.0958      0.047      2.036      0.042       0.004       0.188
C(regionidzip)[T.96465.0]           0.0960      0.048      1.984      0.047       0.001       0.191
C(regionidzip)[T.96469.0]           0.0676      0.048      1.418      0.156      -0.026       0.161
C(regionidzip)[T.96473.0]           0.0817      0.051      1.596      0.111      -0.019       0.182
C(regionidzip)[T.96474.0]           0.1485      0.058      2.581      0.010       0.036       0.261
C(regionidzip)[T.96475.0]           0.0903      0.052      1.730      0.084      -0.012       0.193
C(regionidzip)[T.96478.0]           0.0602      0.066      0.919      0.358      -0.068       0.189
C(regionidzip)[T.96479.0]           0.1383      0.068      2.032      0.042       0.005       0.272
C(regionidzip)[T.96480.0]           0.2379      0.063      3.753      0.000       0.114       0.362
C(regionidzip)[T.96485.0]           0.0937      0.053      1.756      0.079      -0.011       0.198
C(regionidzip)[T.96486.0]           0.0743      0.053      1.409      0.159      -0.029       0.178
C(regionidzip)[T.96488.0]           0.0843      0.047      1.807      0.071      -0.007       0.176
C(regionidzip)[T.96489.0]           0.0491      0.047      1.043      0.297      -0.043       0.141
C(regionidzip)[T.96490.0]           0.1096      0.059      1.867      0.062      -0.005       0.225
C(regionidzip)[T.96492.0]           0.0821      0.050      1.630      0.103      -0.017       0.181
C(regionidzip)[T.96494.0]           0.0792      0.051      1.560      0.119      -0.020       0.179
C(regionidzip)[T.96496.0]           0.0351      0.056      0.632      0.528      -0.074       0.144
C(regionidzip)[T.96497.0]           0.0483      0.062      0.784      0.433      -0.072       0.169
C(regionidzip)[T.96505.0]           0.0959      0.046      2.108      0.035       0.007       0.185
C(regionidzip)[T.96506.0]           0.0771      0.048      1.610      0.107      -0.017       0.171
C(regionidzip)[T.96507.0]           0.0997      0.050      1.997      0.046       0.002       0.198
C(regionidzip)[T.96508.0]           0.1185      0.060      1.973      0.048       0.001       0.236
C(regionidzip)[T.96510.0]           0.0638      0.053      1.210      0.226      -0.040       0.167
C(regionidzip)[T.96513.0]           0.0712      0.050      1.415      0.157      -0.027       0.170
C(regionidzip)[T.96514.0]           0.0766      0.062      1.243      0.214      -0.044       0.197
C(regionidzip)[T.96515.0]           0.1186      0.060      1.975      0.048       0.001       0.236
C(regionidzip)[T.96517.0]           0.1010      0.051      1.991      0.046       0.002       0.201
C(regionidzip)[T.96522.0]           0.0969      0.047      2.068      0.039       0.005       0.189
C(regionidzip)[T.96523.0]           0.0107      0.048      0.223      0.824      -0.083       0.105
C(regionidzip)[T.96524.0]           0.0808      0.050      1.629      0.103      -0.016       0.178
C(regionidzip)[T.96525.0]           0.0685      0.059      1.166      0.244      -0.047       0.184
C(regionidzip)[T.96531.0]           0.0708      0.057      1.253      0.210      -0.040       0.182
C(regionidzip)[T.96533.0]           0.0839      0.056      1.509      0.131      -0.025       0.193
C(regionidzip)[T.96939.0]           0.0675      0.055      1.233      0.218      -0.040       0.175
C(regionidzip)[T.96940.0]           0.0961      0.048      1.992      0.046       0.002       0.191
C(regionidzip)[T.96941.0]           0.0814      0.049      1.651      0.099      -0.015       0.178
C(regionidzip)[T.96943.0]           0.0663      0.056      1.192      0.233      -0.043       0.175
C(regionidzip)[T.96946.0]           0.0726      0.071      1.019      0.308      -0.067       0.212
C(regionidzip)[T.96947.0]           0.0793      0.051      1.550      0.121      -0.021       0.180
C(regionidzip)[T.96948.0]           0.0803      0.052      1.555      0.120      -0.021       0.182
C(regionidzip)[T.96951.0]           0.3394      0.088      3.862      0.000       0.167       0.512
C(regionidzip)[T.96952.0]           0.0872      0.053      1.654      0.098      -0.016       0.191
C(regionidzip)[T.96954.0]           0.0831      0.044      1.870      0.061      -0.004       0.170
C(regionidzip)[T.96956.0]           0.0063      0.057      0.112      0.911      -0.104       0.117
C(regionidzip)[T.96957.0]           0.0914      0.053      1.712      0.087      -0.013       0.196
C(regionidzip)[T.96958.0]           0.0816      0.048      1.685      0.092      -0.013       0.176
C(regionidzip)[T.96959.0]           0.0840      0.048      1.745      0.081      -0.010       0.178
C(regionidzip)[T.96961.0]           0.0818      0.045      1.802      0.072      -0.007       0.171
C(regionidzip)[T.96962.0]           0.0672      0.045      1.494      0.135      -0.021       0.155
C(regionidzip)[T.96963.0]           0.0014      0.046      0.030      0.976      -0.089       0.092
C(regionidzip)[T.96964.0]           0.0961      0.044      2.173      0.030       0.009       0.183
C(regionidzip)[T.96965.0]           0.1011      0.048      2.111      0.035       0.007       0.195
C(regionidzip)[T.96966.0]           0.0641      0.046      1.383      0.167      -0.027       0.155
C(regionidzip)[T.96967.0]           0.0810      0.047      1.721      0.085      -0.011       0.173
C(regionidzip)[T.96969.0]           0.1331      0.050      2.645      0.008       0.034       0.232
C(regionidzip)[T.96971.0]           0.0707      0.049      1.453      0.146      -0.025       0.166
C(regionidzip)[T.96973.0]          -0.0640      0.099     -0.647      0.517      -0.258       0.130
C(regionidzip)[T.96974.0]           0.0952      0.042      2.242      0.025       0.012       0.178
C(regionidzip)[T.96975.0]           0.1186      0.063      1.870      0.062      -0.006       0.243
C(regionidzip)[T.96978.0]           0.0983      0.045      2.190      0.029       0.010       0.186
C(regionidzip)[T.96979.0]           0.0752      0.088      0.855      0.392      -0.097       0.247
C(regionidzip)[T.96980.0]           0.0799      0.075      1.061      0.289      -0.068       0.227
C(regionidzip)[T.96981.0]           0.0486      0.053      0.910      0.363      -0.056       0.153
C(regionidzip)[T.96982.0]           0.0956      0.048      1.996      0.046       0.002       0.190
C(regionidzip)[T.96983.0]           0.0658      0.047      1.402      0.161      -0.026       0.158
C(regionidzip)[T.96985.0]           0.0929      0.047      1.980      0.048       0.001       0.185
C(regionidzip)[T.96986.0]           0.1024      0.162      0.632      0.528      -0.215       0.420
C(regionidzip)[T.96987.0]           0.0943      0.043      2.203      0.028       0.010       0.178
C(regionidzip)[T.96989.0]           0.0724      0.045      1.593      0.111      -0.017       0.161
C(regionidzip)[T.96990.0]           0.0590      0.046      1.272      0.203      -0.032       0.150
C(regionidzip)[T.96993.0]           0.0530      0.043      1.227      0.220      -0.032       0.138
C(regionidzip)[T.96995.0]           0.0861      0.044      1.940      0.052      -0.001       0.173
C(regionidzip)[T.96996.0]           0.0688      0.044      1.575      0.115      -0.017       0.154
C(regionidzip)[T.96998.0]           0.0960      0.045      2.129      0.033       0.008       0.184
C(regionidzip)[T.97001.0]           0.1768      0.059      3.012      0.003       0.062       0.292
C(regionidzip)[T.97003.0]           0.1598      0.058      2.777      0.006       0.047       0.273
C(regionidzip)[T.97004.0]           0.1275      0.048      2.674      0.008       0.034       0.221
C(regionidzip)[T.97005.0]           0.0989      0.047      2.101      0.036       0.007       0.191
C(regionidzip)[T.97006.0]           0.0975      0.056      1.754      0.079      -0.011       0.206
C(regionidzip)[T.97007.0]           0.0706      0.048      1.458      0.145      -0.024       0.165
C(regionidzip)[T.97008.0]           0.0578      0.047      1.229      0.219      -0.034       0.150
C(regionidzip)[T.97016.0]           0.0651      0.045      1.433      0.152      -0.024       0.154
C(regionidzip)[T.97018.0]           0.0676      0.050      1.362      0.173      -0.030       0.165
C(regionidzip)[T.97020.0]           0.0807      0.053      1.513      0.130      -0.024       0.185
C(regionidzip)[T.97021.0]           0.0869      0.053      1.629      0.103      -0.018       0.191
C(regionidzip)[T.97023.0]           0.0114      0.048      0.239      0.811      -0.082       0.105
C(regionidzip)[T.97024.0]           0.0958      0.047      2.018      0.044       0.003       0.189
C(regionidzip)[T.97025.0]           0.0797      0.063      1.258      0.208      -0.045       0.204
C(regionidzip)[T.97026.0]           0.0890      0.046      1.926      0.054      -0.002       0.180
C(regionidzip)[T.97027.0]           0.0911      0.051      1.794      0.073      -0.008       0.191
C(regionidzip)[T.97035.0]           0.0835      0.049      1.705      0.088      -0.012       0.180
C(regionidzip)[T.97037.0]           0.0635      0.081      0.788      0.431      -0.095       0.221
C(regionidzip)[T.97039.0]           0.0504      0.049      1.030      0.303      -0.046       0.146
C(regionidzip)[T.97040.0]           0.0443      0.060      0.738      0.461      -0.073       0.162
C(regionidzip)[T.97041.0]           0.0678      0.046      1.472      0.141      -0.022       0.158
C(regionidzip)[T.97043.0]           0.0745      0.050      1.490      0.136      -0.024       0.173
C(regionidzip)[T.97047.0]           0.0961      0.047      2.034      0.042       0.003       0.189
C(regionidzip)[T.97048.0]           0.0798      0.051      1.559      0.119      -0.021       0.180
C(regionidzip)[T.97050.0]           0.0749      0.051      1.464      0.143      -0.025       0.175
C(regionidzip)[T.97051.0]           0.1045      0.058      1.817      0.069      -0.008       0.217
C(regionidzip)[T.97052.0]           0.0708      0.056      1.273      0.203      -0.038       0.180
C(regionidzip)[T.97059.0]           0.0552      0.075      0.732      0.464      -0.093       0.203
C(regionidzip)[T.97063.0]           0.1158      0.053      2.170      0.030       0.011       0.220
C(regionidzip)[T.97064.0]           0.0613      0.059      1.044      0.296      -0.054       0.176
C(regionidzip)[T.97065.0]           0.0695      0.049      1.409      0.159      -0.027       0.166
C(regionidzip)[T.97066.0]           0.0919      0.068      1.350      0.177      -0.042       0.225
C(regionidzip)[T.97067.0]           0.1008      0.046      2.187      0.029       0.010       0.191
C(regionidzip)[T.97068.0]           0.0863      0.047      1.834      0.067      -0.006       0.179
C(regionidzip)[T.97078.0]           0.0657      0.047      1.406      0.160      -0.026       0.157
C(regionidzip)[T.97079.0]           0.0955      0.050      1.894      0.058      -0.003       0.194
C(regionidzip)[T.97081.0]           0.0527      0.050      1.046      0.295      -0.046       0.151
C(regionidzip)[T.97083.0]           0.0747      0.045      1.645      0.100      -0.014       0.164
C(regionidzip)[T.97084.0]           0.0804      0.049      1.632      0.103      -0.016       0.177
C(regionidzip)[T.97089.0]           0.0935      0.046      2.031      0.042       0.003       0.184
C(regionidzip)[T.97091.0]           0.0889      0.045      1.977      0.048       0.001       0.177
C(regionidzip)[T.97094.0]           0.0986      0.071      1.384      0.166      -0.041       0.238
C(regionidzip)[T.97097.0]           0.0831      0.048      1.726      0.084      -0.011       0.178
C(regionidzip)[T.97098.0]           0.1622      0.066      2.476      0.013       0.034       0.291
C(regionidzip)[T.97099.0]           0.0472      0.050      0.945      0.345      -0.051       0.145
C(regionidzip)[T.97101.0]           0.0767      0.050      1.547      0.122      -0.021       0.174
C(regionidzip)[T.97104.0]           0.1146      0.053      2.148      0.032       0.010       0.219
C(regionidzip)[T.97106.0]           0.0840      0.047      1.771      0.077      -0.009       0.177
C(regionidzip)[T.97107.0]           0.0685      0.051      1.350      0.177      -0.031       0.168
C(regionidzip)[T.97108.0]          -0.2492      0.162     -1.537      0.124      -0.567       0.069
C(regionidzip)[T.97109.0]           0.1068      0.051      2.105      0.035       0.007       0.206
C(regionidzip)[T.97111.0]           0.0898      0.162      0.554      0.579      -0.228       0.407
C(regionidzip)[T.97113.0]           0.0906      0.056      1.630      0.103      -0.018       0.200
C(regionidzip)[T.97116.0]           0.1033      0.045      2.288      0.022       0.015       0.192
C(regionidzip)[T.97118.0]           0.0796      0.044      1.795      0.073      -0.007       0.166
C(regionidzip)[T.97298.0]           0.1319      0.060      2.196      0.028       0.014       0.250
C(regionidzip)[T.97316.0]           0.1940      0.118      1.645      0.100      -0.037       0.425
C(regionidzip)[T.97317.0]          -0.0006      0.046     -0.013      0.989      -0.090       0.089
C(regionidzip)[T.97318.0]           0.0454      0.044      1.036      0.300      -0.040       0.131
C(regionidzip)[T.97319.0]           0.0748      0.043      1.749      0.080      -0.009       0.159
C(regionidzip)[T.97323.0]           0.1476      0.059      2.514      0.012       0.033       0.263
C(regionidzip)[T.97324.0]           0.1182      0.118      1.002      0.316      -0.113       0.349
C(regionidzip)[T.97328.0]           0.0797      0.043      1.853      0.064      -0.005       0.164
C(regionidzip)[T.97329.0]           0.0782      0.044      1.774      0.076      -0.008       0.165
C(regionidzip)[T.97330.0]           0.0625      0.046      1.347      0.178      -0.028       0.153
C(regionidzip)[T.97331.0]           0.1023      0.099      1.034      0.301      -0.092       0.296
C(regionidzip)[T.97344.0]           0.1660      0.071      2.329      0.020       0.026       0.306
ln_calculatedfinishedsquarefeet     0.0126      0.004      2.969      0.003       0.004       0.021
==============================================================================
Omnibus:                     4118.501   Durbin-Watson:                   2.002
Prob(Omnibus):                  0.000   Jarque-Bera (JB):          2425694.947
Skew:                           0.796   Prob(JB):                         0.00
Kurtosis:                      83.407   Cond. No.                     3.45e+03
==============================================================================

Notes:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
[2] The condition number is large, 3.45e+03. This might indicate that there are
strong multicollinearity or other numerical problems.